organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alexander J. Blake,* Peter Hubberstey and Alexander D. Mackrell

School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England

Correspondence e-mail: a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.010 Å R factor = 0.081 wR factor = 0.168 Data-to-parameter ratio = 8.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3,4,6-Tris(pyrazol-1-yl)pyridazine

In the structure of the title compound, $C_{13}H_{10}N_8$, a tetradentate N₄-donor ligand derivatized on the pyridazine backbone with a monodentate N-donor group, the four potentially coordinating N atoms of the pyridazine and 3-and 6-pyrazole rings adopt a *trans-trans* conformation. Although the 6-substituted pyrazole ring is almost coplanar with the pyridazine ring, the 3- and 4-substituted pyrazole rings are severely bent out of the plane of the pyridazine ring. These features suggest that it may not be possible to arrange the four adjacent N-donors such that the molecule can act as a bis-bidentate chelating ligand. An analysis of the extended structure of the title compound reveals a very short, offset face-to-face π - π interaction involving the pyridazine and 6-substituted pyrazole rings of adjacent molecules.

Comment

Pyridazines substituted in the 3- and 6-positions with N-donor ligands act as tetradentate N₄-donor ligands in a bis-bidentate chelating fashion, generating multinuclear coordination complexes with relatively short internuclear separations $[d(M \cdots M) \ ca \ 3.6 \ \text{\AA};$ Thompson *et al.*, 1985; Youinou *et al.*, 1992, Hubberstey & Russell, 1995].

In an attempt to introduce a third ligating centre to these molecules, we have prepared 3,4,6-tris(pyrazol-1-yl)pyridazine, (I), a bis-bidentate N₄-donor ligand derivatized on the pyridazine backbone with a monodentate N-donor group. Its molecular structure is shown in Fig. 1. Two noteworthy points emerge. Firstly, the four potentially coordinating N atoms of the pyridazine and 3- and 6-pyrazole rings (N1, N2, N32 and N62) adopt a trans-trans conformation, which contrasts with the cis-cis conformation required for the tetradentate N₄-donor ligands to act in a bis-bidentate chelating fashion. Secondly, although the 6-substituted pyrazole ring is almost coplanar with the pyridazine ring [dihedral angle 5.5 $(4)^{\circ}$], the 3- and 4-substituted pyrazole rings are severely bent out of the plane of the pyridazine ring [dihedral angles 40.2 (3) and 51.2 (2)°, respectively]. Unfortunately, both points, but especially the latter, which can be attributed to steric conflict between the adjacent pyrazole substituents on the 3- and 4-positions of the pyridazine ring, suggest that it Received 29 October 2002 Accepted 14 November 2002 Online 22 November 2002

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure and atom-numbering scheme of 3,4,6-tris(pyrazol-1-yl)pyridazine. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radii.

A projection of the structure of two molecules onto the least-squares mean plane containing the pyridazine and 6-substituted pyrazole rings of one molecule, showing the π - π -stacking interactions between adjacent molecules.

may not be possible to arrange the four adjacent N-donor centres for it to act as a bis-bidentate chelating ligand.

An analysis of the extended structure reveals the existence of a very short, offset face-to-face π - π interaction involving the pyridazine and 6-substituted pyrazole ring of adjacent molecules (Fig. 2). The perpendicular separation between the least-squares mean planes through these two rings [the maximum deviation of fitted atoms from best plane is 0.10 Å] is very short [3.339 (12) Å; range 3.244-3.409 Å]. As each tris(pyrazol-1-yl)pyridazine molecule forms part of a weakly C-H···N hydrogen-bonded chain [C34-H34 = 0.93, H34···N42 = 2.62, C34···N42 = 3.515 (8) Å and C34-H34···N42 = 162°; C35-H35 = 0.93, H35···N62 = 2.50, C35···N62 = 3.413 (8) Å and C35-H36···N62 = 168°] aligned in the [101] direction (Fig. 3), the offset π - π interactions link the chains to give a three-dimensional matrix (Fig. 4).

Experimental

Sodium hydride (0.98 g, 245 mmol) was added to a solution of pyrazole (1.12 g, 165 mmol) in pre-dried tetrahydrofuran (50 ml). After stirring the mixture for 20 min, 3,4,6-trichloropyridazine

A projection of the structure on to the (010) plane, showing the C34– $H34\cdots N62$ and C35– $H35\cdots N42$ hydrogen-bonding interactions, which generate the chain of molecules aligned along the [101] direction. Key: C black circles, N blue circles and H small yellow circles.

A view of the structure showing the π - π -stacking interactions linking the hydrogen-bonded chains. Key: C black circles, N blue circles and H small yellow circles.

(1.00 g, 54 mmol) was added to the solution (CAUTION: exothermic reaction!) and the mixture stirred for a further 60 min. After cooling to room temperature, the solvent was removed and the resultant solid dissolved in dichloromethane (40 ml) and washed with water (3 \times 30 ml). The organic layer was dried over magnesium sulfate and the solvent removed to give a white powder, which was recrystallized from ethanol (yield; 1.32 g, 47 mmol, 88%) to give crystals suitable for diffraction analysis. Found (calculated for C₁₃H₁₀N₈): C 55.90 (56.10), H 3.60 (3.60), N 40.20% (40.25%). IR (KBr disc) (ν/cm^{-1}):

organic papers

3132 (*m*), 1594 (*s*), 1562 (*s*), 1526 (*s*), 1456 (*s*), 1424 (*s*), 1396 (*s*), 1336 (*s*), 1323 (*m*), 1198 (*s*), 1189 (*m*), 1175 (*s*), 1113 (*m*), 1098 (*m*), 1059 (*s*), 1045 (*s*), 1031 (*s*), 1015 (*s*), 954 (*s*), 939 (*s*), 902 (*s*), 893 (*s*), 865 (*m*), 811 (*s*), 777 (*s*), 759 (*s*), 669 (*m*), 649 (*m*), 624 (*s*), 599 (*s*), 584 (*m*), 521 (*m*), 487 (*m*), 443 (*m*). ¹H NMR (CDCl₃) δ /p.p.m.: 6.45 (*m*, 1H), 6.68 (*m*, 2H), 6.80 (*d*, 1H), 7.81 (*d*, 1H), 7.84 (*d*, 1H), 7.93 (*d*, 1H), 8.21 (*dd*, 1H), 8.71 (*s*, 1H), 8.84 (*dd*, 1H). EI–MS (*m*/*z*) 278 [C₁₃H₁₀N₈]⁺.

Crystal data

 $\begin{array}{l} C_{13}H_{10}N_8\\ M_r=278.29\\ Monoclinic, P2_1/n\\ a=13.190~(5)~\AA\\ b=7.003~(3)~\AA\\ c=14.326~(4)~\AA\\ \beta=102.14~(3)^\circ\\ V=1293.7~(8)~\AA^3\\ Z=4 \end{array}$

Data collection

Stoe Stadi-4 four-circle diffractometer ω/θ scans Absorption correction: none 3374 measured reflections 1688 independent reflections 856 reflections with $I > 2\sigma(I)$ $R_{int} = 0.117$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.081$ $wR(F^2) = 0.168$ S = 1.191688 reflections 190 parameters H-atom parameters constrained $D_x = 1.429 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 29 reflections $\theta = 10.0-12.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 298 (2) KPlate, colourless $0.23 \times 0.23 \times 0.02 \text{ mm}$

 $\begin{array}{l} \theta_{\max} = 22.5^{\circ} \\ h = -14 \rightarrow 14 \\ k = 0 \rightarrow 7 \\ l = -15 \rightarrow 15 \\ 3 \text{ standard reflections} \\ \text{frequency: 60 min} \\ \text{intensity decay: none} \end{array}$

$w = 1/[\sigma^2(F_o^2) + (0.014P)^2]$
+ 1.704P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

This crystal diffracted only to low resolution. No significant diffraction occurred beyond 2θ of 45° , which accounts for the high value of R_{int} (0.117). All H atoms were included at geometrically calculated positions and constrained to ride at a distance of 0.93 Å from their parent C atoms, with $U_{\text{iso}}(\text{H}) = 1.2U_{\text{eq}}(\text{C})$.

Data collection: *STADI*4 (Stoe & Cie, 1997); cell refinement: *STADI*4; data reduction: *X-RED* (Stoe & Cie, 1997); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *SHELXL*97 and *PLATON* (Spek, 2002).

We thank the EPSRC for provision of a diffractometer and the University of Nottingham for financial support (to ADM).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Hubberstey, P. & Russell, C. E. (1995). J. Chem. Soc. Chem. Commun. pp. 959– 960.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2002). *PLATON*. Version of 20 September 2002. University of Utrecht, The Netherlands.
- Stoe & Cie (1997). STADI4 (Version 1.07) and X-RED (Version 1.09). Stoe and Cie, Darmstadt, Germany.
- Thompson, L. K., Woon, T. C., Murphy, D. B., Gabe, E. J., Lee, F. L. & Page, Y. (1985). Inorg. Chem. 24, 4719–4725.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
- Youinou, M. T., Rahmouni, N., Fischer, J. & Osborn, J. (1992). Angew. Chem. Int. Ed. Engl. 31, 733–735.